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Abstract

Computing the transitive closure in directed graphs is a fundamental graph problem. We
consider the more restricted problem of computing the number of nodes reachable from every
node and the size of the transitive closure. The fastest known transitive closure algorithms
run in O(min{mn, n2.38}) time, where n is the number of nodes and m the number of edges
in the graph. We present an O(m) time randomized (Monte Carlo) algorithm that estimates,
with small relative error, the sizes of all reachability sets and the transitive closure. Another
ramification of our estimation scheme is a Õ(m) time algorithm for estimating sizes of neigh-
borhoods in directed graphs with nonnegative edge lengths. Our size-estimation algorithms
are much faster than performing the respective explicit computations.

1 Introduction
Computing the transitive closure and reachability information in directed graphs is a fundamental
graph problem that has many applications, in particular in database systems (see, e.g., Dar [9] and
Yannakakis [24]). Consider directed graphs G = (V,E) where n = |V | and m = |E|. In the
all-pairs problem, the goal is to find all pairs of nodes (u, v) ∈ V × V , such that u can reach
v via a directed path between them. In the single-source problem, the goal is to compute all
nodes reachable from a specified source node. In the (symmetric) single-sink problem, the goal is
to compute all nodes that can reach the sink. The single-source (or single-sink) problems can be
solved using linear-timeO(m+n) graph searching techniques such as depth-first search or breadth-
first search. The best known bounds for the all-pairs problem is O(mn), by solving a single-source
problem for each node, or alternatively O(n2.38) [7] using fast binary matrix multiplication. (see
e.g. [8] for background).

∗Preliminary version appeared in the proceedings of FOCS ’94
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The objective, for many applications, is to solve the more restricted descendant counting prob-
lem, that is, to compute (or estimate) for each node the number of nodes reaching or reachable
from it and the total size of the transitive closure. Descendant counting is a fundamental problem
and hence, there is interest in designing dedicated algorithms that are faster than performing the
explicit computations. For example, in query optimization in databases, estimates of query result
size are useful both when the size itself is the desired answer or as a way to determine the feasibil-
ity of a query. (Papers by Lipton and Naughton [21], and by Lipton et al. [22] provide results and a
survey of other work.) Size estimation may also be useful in applications involving multiplications
of large matrices with real-valued entries ([R. Lipton, personal communication]). In [5] the au-
thor applied (and experimentally evaluated) the use of size estimation for computing sparse matrix
products. Sparse matrices can be multiplied using much fewer operations than dense ones. Hence,
prior knowledge of the number of non-zero entries in a product of matrices can be used to speed
up the multiplication. The problems of estimating the number of nonzero entries in each column,
each row, or the whole matrix product of (two or more) matrices reduces naturally to estimating
sizes of reachability sets.

For each v ∈ V , denote by S(v) the reachability set of v (set of nodes reachable from v) and
denote by T =

∑
v∈V |S(v)| the size of the transitive closure. We present a Monte Carlo linear

time algorithm that produces ŝ(v) (v ∈ V ) and T̂ , high confidence estimates with small relative
error on S(v) (v ∈ V ) and T , respectively. By reversing edge directions, the results carry over to
the symmetric problem of estimating the number of nodes that can reach each node. Our method
introduces a general size-estimation technique. Another important application is estimating sizes
of neighborhoods in directed graphs with nonnegative edge lengths. For a node v ∈ V and d > 0,
the d-neighborhood of v, denoted N(v, d) = {u ∈ V |dist(v, u) ≤ d}, is the set of nodes within
distance of at most d from v. We present a O(m log n+ n log2 n) time Monte Carlo algorithm that
for each pair (v, d) ∈ V × R+ produces n̂(v, d), a high confidence, small relative error estimate
on the size of the neighborhood N(v, d). (The algorithm outputs a compact representation of all
neighborhood sizes such that for a given pair (v, d), an estimate can be obtained in O(log log n)
time.) Previously, it was not known that sizes of reachability sets can be estimated faster than a
transitive closure computation and that neighborhood sizes can be estimated faster than explicit all
pairs shortest paths computation (Õ(mn) time by applying Dijkstra’s algorithm for each v ∈ V
as a source [8]). Our algorithms are also simple to implement and we expect them to be useful
in practice. Further applications of our scheme are a new approach for computing the transitive
closure, fast estimations of sizes of unions of reachability sets, and an online method for counting
events in a distributed setting.

For any fixed ε > 0 and δ ∈ (0, 1], our estimates for neighborhoods, reachability sets, and
transitive closure sizes (the quantities n̂(v, d), ŝ(v) , and T̂ ) are such that with probability at least
1− δ, the respective relative error ( ||N(v,d)|−n̂(v,d)|

|N(v,d)| , ||S(v)|−ŝ(v)|
|S(v)| , or |T−T̂ |

T
) is at most ε. Furthermore,

the expected relative error and the variance can be made smaller than any fixed ε. More precise
tradeoffs between running time and accuracy are presented later on.

We sketch our algorithm and provide some intuition. Our approach utilizes a linear time pro-
cedure that for each node v ∈ V , returns a random sample from a distribution with parameter
|S(v)|. We apply the procedure several times and for each v ∈ V , deduce (estimate) the value of
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|S(v)| from the samples. The problem of estimating the parameter of a distribution from samples,
knowing the family (e.g., Poisson or Exponential distributions), arises frequently in many contexts
(see, e.g. [3]). Karger [16] used a similar approach to estimate the size of the min-cut in weighted
graphs. To produce the samples, we employ a subroutine for the least-descendent mapping: For
a directed graph and a ranking of its nodes (a bijection of V onto {1, . . . , n}), compute a map-
ping of every node v ∈ V to the least-ranked node in S(v). The least-descendent mapping can be
computed in O(m) time using any standard linear-time graph searching method (e.g., Depth-First
or Breadth-First search). Consider the least-descendent mapping when the ranking is a random
permutation. For each v ∈ V , the lowest rank of a node in the set S(v) is highly correlated with
the size of S(v). For example, if S(v) contains at least half the nodes, it is very likely that the
lowest rank of a node in S(v) is very small, and if S(v) contains only one node, we would expect
the lowest rank to be around n/2. The estimation algorithm computes the least-descendent map-
ping for random rankings and uses these lowest-ranks to produce, for each v ∈ V , an estimate of
|S(v)|. The confidence level and the accuracy of the estimates can be increased by considering
least-descendent mappings produced by several such iterations (each utilizing a different random
permutation). In effect, in each iteration random keys for the nodes are selected independently from
some distribution. The least-descendent mapping is computed with respect to the ranking induced
by sorting the keys. For each v ∈ V , an estimate ŝ(v) is obtained by applying an estimator to the
keys of the least-descendants of v in the different iterations. We analyze several distributions and
estimators.

We provide a parallel version of our reachability sets size estimation algorithm. We reduce
the problem to O(log n) single-source reachability computations on subgraphs of our input graph.
Descendant counting plays an important role in parallel depth-first search algorithms for planar
and general graphs [1, 15]. Kao and Klein provided a polylog time linear processor algorithm for
descendant counting on rooted planar graphs [15]. Their algorithm is based on a fairly complicated
reduction to the single-source reachability problem and an efficient parallel algorithm for planar
single-source reachability. By combining our results with Kao and Klein’s (or the improved Guat-
tery and Miller [12]) planar reachability algorithm, we obtain a parallel algorithm for approximate
descendant counting on general planar graphs.

The previous best known algorithm for estimating the size of the transitive closure was given by
Lipton and Naughton [20, 21]. For any fixed ε > 0 and δ ∈ (0, 1], in timeO(n

√
m) their algorithm

computes an estimate T̂ such that with probability at least 1−δ, |T−T̂ | ≤ εT+n(1+ε). When T =
ω(n), their estimate has small relative error (with probability at least 1−δ, |T−T̂ | ≤ εT ). They also
showed that for almost-regular graphs, where the out-degrees of all nodes are within a constant
factor of each other, the algorithm runs in linearO(m) time. Lipton and Naughton posed as an open
question the existence of a linear time estimation algorithm for general graphs. Previous algorithms
for estimating the size of the transitive closure were based on randomly sampling source-nodes,
solving the single-source reachability problem for the sampled nodes, and using this information
to estimate the size of the transitive closure. Lipton and Naughton introduced adaptive sampling
of source-nodes, that is, instead of initially fixing the number of sampled nodes, according to the
specified confidence and accuracy levels, it initially allocates time bounds and samples source-
nodes adaptively until the allocated time is used. Our estimation algorithm answers affirmatively
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Figure 1: Example of sets X and Y , a ranking r, and le : Y → X .

the open question posed by Lipton and Naughton. Furthermore, it overcomes other drawbacks
of previous algorithms. The source-node-sampling based approaches inherently can not estimate
sizes of reachability sets of nodes other than the sampled source-nodes. Our algorithm estimates
sizes of all reachability sets, runs in linear time, and has small expected relative error for all input
graphs.

In Section 2 we present our estimation framework. In Section 3 we apply the estimation method
to sizes of reachability sets and transitive closure. Section 4 is concerned with estimating reacha-
bility in parallel. In Section 5 we apply our framework to estimate neighborhood sizes in directed
graphs with nonnegative edge lengths. Section 6 contains a discussion of estimators. We consider
estimators based on averaging or on the bk(1 − 1/e)cth smallest of the keys of least-descendants
obtained in k iterations. Section 7 contains the performance analysis for selection-based estima-
tors and Section 8 considers averaging-based estimators. In particular, we provide exact tradeoffs
between the estimate quality and the number of iterations. Section 9 is concerned with some im-
plementation issues. In Section 10 we discuss further applications.

2 The estimation framework
We present our size estimation framework. An analysis is provided later on.

Let X and Y be sets and let S : Y → 2X be a mapping from the elements of Y to subsets of
X . Let w : X → R+ be nonnegative weights associated with the elements of X . Our objective
is to compute estimates on w(S(y)) =

∑
x∈S(y) w(x) for all y ∈ Y . We assume that the elements

of X and Y and the weights are given, but it is costly to compute w(S(y)) for all y ∈ Y . The
following Least-Element Subroutine (LE) is provided as an oracle. When LE is presented with a
ranking r : X → {1, . . . , |X|} of the elements of X , it returns a mapping le : Y → X , such that
for all y ∈ Y , le(y) ∈ S(y) and r(le(y)) = minx∈S(y) r(x). That is, for each element y ∈ Y , LE
computes the least element in S(y) with respect to the ranking r. See Figure 1 for an example of
such sets X and Y , some ranking r on the elements of X , and the corresponding mapping le. The

4



applications in this paper utilize only a non-weighted version, where all the elements of X have
unit weights and our goal is to compute estimates on |S(y)| for all y ∈ Y . With unit weights, LE
is applied with rankings that are random permutations.

The estimation algorithm performs n iterations, where n is determined by the desired accuracy
of the estimate. After the iterations, estimates are produced by applying an estimator to the values
obtained. The ith iteration (1 ≤ i ≤ n) is as follows:

i. Select keys Ri : X → R+, independently for each x ∈ X . The distribution from which
Ri(x) is selected is determined by w(x). We analyze the Exponential family of distribu-
tions, with parameter w(x): The exponential distribution has probability density function
w(x) exp(−w(x)t) and distribution function 1− exp(−w(x)t) (t ≥ 0). (One way to obtain
samples is to sample z from Uniform [0, 1] and output −(ln z)/w(x)).

ii. Apply LE with the ranking on X induced by sorting the keys Ri. Denote by lei : Y → X
the mapping returned by LE.

The following claims are immediate.

Proposition 2.1. For all y ∈ Y , the distribution of the minimum key R(le(y)) depends only on
w(S(y)).

Proof. The minimum of k r.v.’s with distributions with parametersw1, . . . , wk has distribution with
parameter

∑k
j=1 wj .

Proposition 2.2. For all y ∈ Y and x ∈ S(y), Prob{x = le(y)} = w(x)
w(S(y))

. In unweighted settings,
le(y) has a uniform distribution over S(y).

For each element y ∈ Y , we estimatew(S(y)) by applying an estimator to the valuesRi(lei(y))
(1 ≤ i ≤ n). We consider estimators based on:

i. averaging the n samples.

ŝ(y) ≡ n∑
1≤i≤nRi(lei(y))

,
n− 1∑

1≤i≤nRi(lei(y))

ii. selection from the samples. Let l̃e(y) be the bn(1 − 1/e)c-smallest value in the sequence
Ri(lei(y)) (1 ≤ i ≤ n).

ŝ(y) ≡ 1

l̃e(y)

Using the Uniform distribution An alternate family of distributions that provides the same
asymptotic convergence is Minimum of Uniform distributions: The key of x ∈ X is sampled from
a distribution U (w(x)) with probability density function w(x)(1− t)w(x)−1 and distribution function
1− (1− t)w(x) (0 ≤ t ≤ 1). For unit weights, U (1) is the uniform distribution on the interval [0, 1].
(One way to sample from U (w) is to sample z from Uniform [0, 1] and output 1 − z1/w.) For our
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estimation framework to be effective, we require w(S(y)) ≥ 1 for all y ∈ Y . With this family of
distribution we consider the averaging estimator

ŝ(y) ≡ n∑
1≤i≤nRi(lei(y))

− 1

and selection estimator
ŝ(y) ≡ 1

l̃e(y)
− 1 .

Complexity Computing the estimates ŝ(y) for all y ∈ Y amounts to producing n (sorted) random
key assignments and performing n calls to LE. For simplicity of presentation and analysis we
assume that the selected keys are real numbers. Simple considerations show, however, that it is
sufficient to use O(log ε−1) significant bits, where ε is the tolerated relative error. The expected
number of other bits is constant, hence O(log ε−1) random bits per key are sufficient. Furthermore,
randomized-rounding type analysis establishes that for n � ε−1, a constant number of significant
bits suffices. Standard arguments show that a list of independent identically distributed numbers
can be sorted in expected linear time (e.g., using hashing). Hence, for unit weights, the sorted
key assignment is selected in O(|X| log ε−1) time. Keys can also be sorted in linear time when,
for example, log (maxx∈X w(x)/minx∈X w(x)) is small or when the weights w(x) (x ∈ X) are
provided sorted.

Convergence In later sections we establish that the estimates ŝ(y) have the following confidence
and accuracy levels. These asymptotic bounds are applicable to other variants of the estimators
listed above.

Theorem 2.1. For all y ∈ Y ,

for 0 < ε < 1 , Prob{|w(S(y))− ŝ(y)| ≥ εw(S(y))} = exp(−Ω((ε2n))) .
for ε ≥ 1 , Prob{|w(S(y))− ŝ(y)| ≥ εw(S(y))} = exp(−Ω((εn))) .

Theorem 2.2. For all y ∈ Y ,

E(|w(S(y))− ŝ(y)|/w(S(y))) = O(1/
√
n) .

In Section 7 we establish the correctness for the selection based estimators (using Chernoff
bounds). In Section 8 we provide exact analytic expressions for the dependence of the confidence
on the accuracy, the bias, the variance, and the relative error for the averaging based estimators
with exponentially distributed keys.

3 Estimating reachability
We apply the framework of Section 2 to estimate sizes of reachability sets and the transitive closure.
The objective is to compute for each v ∈ V an estimate ŝ(v) for |S(v)| (the number of descendants
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Example: 

Reachability sets: S(a)={a,b,d,f,h}  S(b)={b,d,f,h}  S(c)={b,c,d,e,f,h}

S(d)={d,f,h}  S(e)={e}  S(f)={f}  S(h)={f,h}

For ranks such that r(e)<r(b)<r(d)<r(a)<r(c)<r(f)<r(h)

we have le(a)=b,le(b)=b,le(c)=e,le(d)=d,le(e)=e,le(f)=f,le(h)=f

Figure 2: Example of a graph, a ranking of the nodes, and a corresponding mapping

of v) and an estimate T̂ for T =
∑

v∈V |S(v)| (the size of the transitive closure). The sets X and Y
correspond to the vertex set V . The elements of X have unit weights. The mapping S maps each
node v to the set of nodes reachable from v. The mapping le maps each v ∈ V to the least ranked
descendent of v. See Figure 2 for an example of a graph, the corresponding reachability sets, and
the mapping le with respect to some ranking.

The following algorithm inputs an arbitrary ranking of the nodes and computes the mapping
le in O(m) time. The algorithm may employ any linear-time graph search (e.g., depth-first-search
or breadth-first search). Suppose the nodes v1, . . . , vn are sorted in increasing order according to
their key.

Algorithm 3.1. (Least-Descendant Subroutine)

i. Reverse the edge directions of the graph.
Iterate Step ii until V = ∅.

ii. Let i← min{j|vj ∈ V }.
Perform a search to find all nodes Vi ⊂ V reachable from vi.
For every v ∈ Vi, let le(v)← vi.
Let V ← V \ Vi.
Remove from E all edges incident to nodes in Vi.

Each iteration of the estimation algorithm amounts to selecting a sorted key assignment (can be
performed in O(n) time) and applying Algorithm 3.1. Therefore, each iteration takes O(m) time.

Suppose that we utilize k iterations. It follows from Theorems 2.1 and 2.2 that the estimation
algorithm runs in time O(km) and produces estimates such that

i. For any v ∈ V , for 0 < ε ≤ 1,

Prob{||S(v)| − ŝ(v)| ≥ ε|S(v)|} = exp(−Ω((ε2k))) .
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ii. For any v ∈ V ,

E

(
||S(v)| − ŝ(v)|
|S(v)|

)
= O(1/

√
k) .

Note that if we choose k = O(ε−2 log n) then with probability 1 − O(1/ poly(n)) our estimates
are such that

for all v ∈ V ,
||S(v)| − ŝ(v)|
|S(v)|

≤ ε .

We use the estimator T̂ ≡
∑

v∈V ŝ(v) for T , the size of the transitive closure.

Corollary 3.2. E
(
|T̂−T |
T

)
= O( 1√

k
)

Proof. Note that T =
∑

v∈V |S(v)|. We have

E(|T̂ − T |) ≤ E(
∑
v∈V

|ŝ− |S(v)||) =
∑
v∈V

E(|ŝ− |S(v)|) = O(1/
√
k)
∑
v∈V

|S(v)| = O(T/
√
k) .

Standard considerations establish the following:

Proposition 3.3.
Prob{|T̂ − T | ≥ εT} = exp(−Ω((ε2k))) .

Remark 3.4. The estimate T̂ on the size of the closure has the same worst-case performance as
estimates on sizes of individual reachability sets. This is indeed tight if there is a large correlation
between reachability sets (for example, when all (a large fraction of) the nodes have (almost)
identical reachability sets). In practice, however, it is reasonable to expect the estimate on the size
of the closure to converge much faster than the estimates ŝ(v).

4 Estimating reachability in parallel
We present a linear-processor polylog-time reduction of the reachability estimation problem to the
single-source reachability problem. Hence, a parallel estimation algorithm is advantageous on net-
works and running time bounds where single-source reachability can be solved more efficiently
than transitive closure. Efficient polylog-time single-source reachability algorithms are known for
some restricted families of graphs, for example planar graphs [15] or layered graphs when the
number of layers is small. For general graphs, Ullman and Yannakakis [23] presented a reacha-
bility algorithm with tradeoffs between the time and the work and Klein and Sairam [18] gave a
Õ(m2) work polylog time single-source reachability algorithm (for sparse graphs it outperforms
the O(n2.38) [7] transitive closure algorithm).
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Remark 4.1. Our parallel estimation algorithm utilizes the multi-source reachability problem,
where for U ⊂ V , the goal is to compute

⋃
u∈U S(u), the set of nodes reachable from U . This

problem can be reduced to single source reachability by adding a “super source” with outgoing
edges to all nodes in U . However, adding a super source may alter a desirable structure of the
graph such as planarity, that allows for efficient parallel single source reachability computations.
We show that the multi-source problem reduces to the single source problems on subgraphs of the
input graph. We sketch the reduction. Perform O(log |U |) phases sequentially. In phase i: select
O(2i) random nodes from U , compute single source reachability from each of the selected nodes,
and remove all nodes and edges traversed from the graph. Standard arguments establish that
each edge of the graph participates in a constant expected number of single-source computations.
Hence the multi-source problem has the same work bound and is O(logU) times slower than the
single-source problem.

The k iterations of the sequential estimation algorithm are independent, and therefore can be
performed in parallel. Each iteration amounts to computing a sorted key assignment and the respec-
tive least-descendant mapping le. The sequential algorithm of Section 3 computes le by performing
a sequence of n dependent partial graph searches. Below we present a parallel least-descendant
algorithm. The parallel algorithm performs O(log n) phases. In each phase we have a collection of
disjoint subgraphs of the original graph. Each phase amounts to performing a multi-source reach-
ability computation on each of the subgraphs. These computations result in further partitioning
of the subgraphs. Hence, the time and work bounds of the parallel least-descendant computa-
tion are O(log n) times the time and work bounds of a multi-source reachability computation, and
O(log2 n) times the time and O(log n) times the work of a single-source computation on the input
graph. The algorithm partitions the graph recursively. For each subgraph H = (VH , EH) in the
partition we maintain a list `H of nodes (`H ⊂ VH) that contains, for every v ∈ VH , the lowest-
ranked node in S(v). Initially the partition includes only the input graph and its associated list
contains all nodes, sorted by key in decreasing order. In each phase, the algorithm considers every
subgraph H in the partition. If |`H | = 1 (the list of H contains a single node), we map each node
in VH to v ∈ `H (for all u ∈ VH , le(u) ← v) and remove H . Otherwise, if |`H | > 1, we apply a
divide-and-conquer subroutine that partitions H into two subgraphs H1, H2 with associated lists
`H1 , `H2 as follows:

i. |`H1 | ≤ d|`H |/2e and |`H2| ≤ b|`H |/2c

ii. for i = 1, 2, for each v ∈ VHi , the lowest-ranked node in S(v) is contained in `Hi .

We sketch the subroutine that partitions H: Perform a multi-source reachability computation from
the set comprising the d|`H |/2e lowest-ranked nodes in the list `H . The first subgraph H1 consists
of all reachable nodes and the edges incident to these nodes. Its associated list `H1 contains the
first d|`H |/2e nodes in `H . The second subgraph H2 contains all the nodes that were not reachable
and their incident edges. The list `H2 ← `H \H1 is contained in the highest ranked b|`H |/2c nodes
of `H . It is easy to verify that if `H contained le(v) for all v ∈ VH , then the two subgraphs H1, H2

possess the desired properties. Since the claim holds in the first phase, by induction it holds when
the partitioning is halted and the lists contain a single node. Hence, at termination, each subgraph
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Some neighborhoods: N(c,4)={b,c,d,e,f,h}  N(d,1)={d,h}  N(h,3)={h}

N(a,1)={a}  N(a,5)={a,b,d,f,h}  N(c,2)={b,c,d,e} 

Example: For ranks such that r(e)<r(b)<r(d)<r(a)<r(c)<r(f)<r(h)
the associated lists are:

a:  (2,b) (0,a)
e:  (0,e) f:  (0,f)

b:  (0,b)

h:  (4,f) (0,h)

c:  (2,e) (1,b) (0,c) d:  (0,d)

2

1

1

4

2

2

3

1

Figure 3: Example of a weighted graph, a ranking, and the associated lists

H = (VH , EH) is such that the single node `H is the least ranked node in S(v) for all v ∈ VH . It is
easy to see that the algorithm terminates after at most dlog ne phases.

5 Estimating neighborhood sizes
The computation of all neighborhoods amounts to an all-pairs shortest paths computation. We
present an algorithm for estimating the sizes of all neighborhoods in directed graphs with non-
negative edge-lengths. The algorithm outputs for each node v ∈ V , an estimate list that captures
the estimated sizes of all neighborhoods. The estimate list of v is a list of pairs (D(v)i, S(v)i)
(i = 0, . . . , n(v)) such that:

• D(v)i and S(v)i are increasing, 0 = D(v)0 < D(v)1 < · · · < D(v)n(v)+1 ≡ ∞ and
1 ≤ S(v)0 < S(v)1 < · · · , S(v)n(v) ≡ n.

• For all pairs (v, d) ∈ V ×R+, we use n̂(v, d) = S(v)j , where D(V )j ≤ d < D(V )j+1.

Therefore, when the estimate lists are provided, an estimate on the neighborhood size of a query
pair (v, d), is obtained in time O(log n(v)), using a binary search.

We apply the estimation framework of Section 2 where the set X corresponds to the vertex
set V and has unit weights, the set Y is the collection of all pairs (v, d) ∈ V × R+, and S maps
each pair (v, d) to N(v, d) ⊂ V . For a given ranking of the nodes, le maps each pair (v, d) to
the least ranked node in N(v, d). For every key assignment R and v ∈ V , the value R(le(v, d))
is a piecewise constant nonincreasing function of d. We represent le for all values d ∈ R+ as
a least-element list of labeled intervals. The least-element list of a node v ∈ V is a list of pairs
(av(i), uv(i)) ∈ R+ × V (1 ≤ i ≤ `v) such that:

• av(1) > · · · > av(`v) = 0 (av(0) ≡ ∞), and
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• for all 1 ≤ i ≤ `v and av(i − 1) > d ≥ av(i), le(v, d) = uv(i) (uv(i) is the least rank node
in N(v, d)).

See Figure 3 for an example of a weighted graph, some neighborhoods, a ranking of the nodes, and
the corresponding least-element lists. In Subsection 5.1 we present a least-element lists algorithm
and establish the following:

Proposition 5.1. If the ranking r : V of the nodes is a random permutation then

i. the algorithm runs inO(m log n+n log2 n) expected time (for unit edge lengths inO(m log n)
expected time), and

ii. the expected size of each least-element list is O(log n).

We perform k iterations of selecting keys and computing least-element lists. Let lei be the least-
element mapping, Ri the key assignment, and (aiv(j), u

i
v(j)) (1 ≤ j ≤ `iv) be the least-element

lists of the ith iteration. The value of the averaging-based estimators for N(v, d) is determined
by the sum sv(d) =

∑k
i=1 Ri(lei(v, d)). Similarly, the value of the selection based estimators is

determined by mv(d), the bk(1− 1/e)c smallest of le1(v, d), . . . , lek(v, d). It is easy to verify that
the functions sv(d) and mv(d)

i. are piecewise constant functions of d,

ii. are nonincreasing (since for all i and v, the least key Ri(lei(v, d)) is nonincreasing with d),

iii. and have
∑

i `
i
v breakpoints {aiv(j)|1 ≤ i ≤ k, 1 ≤ j ≤ `iv}.

It is easy to see that an interval representation of sv(d) and mv(d) (and hence, the estimate list of
v) can be computed in O(

∑
i `
i
v log k) time by first merging the k sorted lists aiv(j) 1 ≤ i ≤ k and

performing O(1) operations per breakpoint of the merged list.
The expected size of the least-element lists is O(log n). Hence, the estimate lists have an

expected number of O(k log n) breakpoints. Note that for accuracy ε, the estimate lists can be
reduced to size O(ε−1 log n). For each query pair (v, d), the estimate n̂(v, d) can be computed in
O(log k + log log n) time, using a binary search on the estimate list of v.

The theorem follows from Proposition 5.1 and Theorems 2.1 and 2.2.

Theorem 5.1. The k-iteration algorithm produces the estimate lists in O(k(m log n + n log2 n))
expected time (O(km log n) for unit lengths). For a query pair (v, d) ∈ V × R+, an estimate
n̂(v, r) can be computed in O(log k + log log n) expected time. The estimates are such that:

i. For ε > 0,

Prob{||N(v, d)| − n̂(v, d)| ≥ ε|N(v, d)|} = exp
(
−Ω(ε2k)

)
.

ii.
E(||N(v, d)| − n̂(v, d)|/|N(v, d)|) = O(1/

√
k) .

Choosing k = O(ε−2 log n) guarantees that with probability 1−O(1/ poly(n)),

for all (v, d) ∈ V ×R+,
||N(v, d)| − n̂(v, d)|

|N(v, d)|
≤ ε .

11



5.1 Computing least-element lists
We present the least-element-lists algorithm and prove Proposition 5.1. The algorithm is based on
a modified Dijkstra’s algorithm (see, e.g. [8]). We assume that the nodes v1, . . . , vn are sorted by
key in increasing order. We denote by eij the edge from vi to vj . Let D : E → R+ be the lengths
of the edges.

Algorithm 5.2. (Compute least-element lists)

i. Reverse the edge directions of the graph.
For i = 1, . . . , n: di ←∞
For i = 1, . . . , n: initialize the list of vi to the empty list.

ii. For i = 1, . . . , n: (modified Dijkstra’s algorithm):

(1) Start with an empty heap. Place vi on the heap with label 0.

(2) Iterate the following until the heap is empty:
Remove the node vk of minimum label from the heap. Let d be the label of vk.
Place the pair (d, vi) on vk’s list.
Let dk ← d.
For each out-neighbor vj of vk do as follows:

• If vj is in the heap, update its label to the smaller of the current label and d +
D(ekj).
• If vj is not in the heap, then if d + D(ekj) < dj place vj on the heap with label
d+D(ekj).

The following Proposition establishes the correctness of the algorithm.

Proposition 5.3. i. A node vk is placed on the heap in iteration i if and only if

dist(vi, vk) < dist(vj, vk) for all j < i.

ii. If vk is placed on the heap during iteration i, then the pair (dist(vi, vk), vi) is placed on vk’s
list and the value of dk is updated to be dist(vi, vk).

Proof. We first establish that the proposition holds if at the beginning of iteration i, for every
1 ≤ k ≤ n, dk = minj<i dist(vj, vk). Consider vk such that dist(vi, vk) < dist(vj, vk) for all j < i.
We show that vk is placed on the heap and before the end of the iteration has label dist(vi, vk).
The proof is by induction on the number of edges in the shortest path from vi to dist(vj, vp), then
dist(vi, vk) ≥ dist(vj, vk), and we get a contradiction. Let vq be the next-to-last node on the path.
The induction hypothesis asserts that vq was placed on the heap, and was removed when it had
label dist(vi, vq). Therefore, when the neighbors of q are scanned, k is placed on the heap with
label dist(vi, vk) or if already in the heap, gets its label updated to dist(vi, vk). It remains to prove
the assumption that at the end of iteration i, for every 1 ≤ k ≤ n, dk = minj≤i dist(vj, vk). The
proof is straightforward by induction on the iterations, using the claim proved above.
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We analyze the running time of the algorithm when implemented with Fibonacci heaps (see,
e.g. [8]). In each iteration, for each placement of a node v in the heap, the algorithm examines
each of v’s out-neighbors and performs at most one label update for each neighbor. When v is
removed from the heap, the algorithm performs one operation of finding the minimum labeled
element in the heap. Fibonacci heaps use O(log n) time to find a minimum element and O(1)
time for an insertion or an update. Let `i denote the number of iterations in which the node
vi was placed on the heap (1 ≤ i ≤ n). It follows that the running time of the algorithm is
O
(∑

1≤i≤n `i(log n+ outdeg(vi))
)
. Note that `i is also the size of vi’s list, since a new pair is

added in each iteration that places vi on the heap.

Proposition 5.4. If the ranking is a random permutation, the expected size of `i is O(log n) (for
all 1 ≤ i ≤ n). Furthermore, the `i’s are all O(log n) with probability 1− 1/ poly(n).

Proof. Consider a ranking vi1 , . . . , vin of the nodes according to their distance from vi. It follows
from Proposition 5.3 that the node vi is placed on the heap at iteration ij if and only if for all k < j,
ik > ij . A standard well-studied Quicksort-type analysis (see, e.g. [19]) concludes the proof. (The
permutation order can be viewed as the order of elements chosen to partition the sequence, and all
elements larger than the current one constitute a sublist in the partitioning process.)

Therefore, if the ranking is a random permutation, the expected running time of Algorithm 5.2
is O(m log n+n log2 n). When the graph has unit edge length, modified breadth-first searches can
replace the modified Dijkstra’s algorithm in Step ii of Algorithm 5.2. The latter yields O(m log n)
expected time.

6 Estimating the least-key distribution
We analyze the performance of the estimation framework when keys of elements x ∈ X are
selected according to the exponential or uniform distributions. For all y ∈ Y , the minimum key of
an element in S(y) has distribution M (w(S(y))) that depends only on w(S(y)). We discuss the form
of M (k) for both families of distributions. Each iteration of the estimation framework supplies
us with a random sample from M (w(S(y))). The estimation algorithm estimates k = w(S(y))
by applying an estimator k̂ : Rn → R to n independent samples from M (k) (obtained in n
iterations). We discuss criteria for measuring the performance of different estimators. In Section 7
we establish the asymptotic bounds for the selection-based estimators and in Section 8 we analyze
the averaging-based estimators.

6.1 Exponentially distributed keys
The exponential distribution with parameter w has density function we−wx (x ≥ 0), distribution
function 1 − e−wx (x ≥ 0), expected value 1/w, and variance 1/w2. Consider the r.v. that is
the minimum of ` independent exponential r.v.’s with weights w1, . . . , w`, where k =

∑`
i=1wi.

This r.v. is exponentially distributed with parameter k (see,e.g, Feller [10]). Hence, when keys are
selected according to the exponential distribution,M (k) is exponentially distributed with parameter
k, has density ke−kx, distribution 1− e−kx (x ≥ 0), expected value µ = 1/k and variance 1/k2.
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6.2 Uniformly distributed keys
For a parameter k > 1, consider the distribution U (k) such that for 0 ≤ t ≤ 1 Prob{M (k) ≥ t} =
(1 − t)k. For integral values of k, U (k) is the distribution of the minimum of k independent r.v.’s
uniformly sampled from the interval [0, 1]. U (k) has distribution function 1− (1− t)k, probability
density function k(1− t)k−1 (0 ≤ t ≤ 1), expectation

E(U (k)) =

∫ 1

0

kx(1− x)k−1dx = 1/(1 + k) ,

second moment

E(U (k)2
) =

∫ 1

0

kx2(1− x)k−1dx = 2/((2 + k)(1 + k)) ,

and hence, variance

Var(U (k)) = E(U (k)2
)− E(U (k))2 = k/((2 + k)(1 + k)2) .

Consider a r.v. that is the minimum of ` elements independently sampled from distributions U (wi)

(wi > 0, i = 1, . . . , `). For 0 ≤ t ≤ 1 we have

Prob{x ≥ t} =
∏̀
i=1

(1− t)wi = (1− t)
∑`
i=1 wi .

Hence, this r.v. has distribution U (
∑`
i=1 wi). Therefore, when keys are sampled from U (w(x)), M (k)

has distribution U (k).

6.3 Criteria for choosing estimators
We review some basic notions from the theory of statistical inference (see, e.g., Kiefer [17] or
Bickel and Doksum [2]) in the context of our framework. Consider the following problem. We
are given n independent values M (k)

i (1 ≤ i ≤ n) from a distribution M (k), for some unknown k.
We would like to estimate k, knowing only that k > 0. The estimator k̂ is a mapping of the form
k̂ : Rn

+ → R+. Our objective is to find an estimator that minimizes the maximum, over k > 0

(k ≥ 1 for the uniform distribution), of the expected value of W (k, k̂), where W is the “loss”
when the real answer is k, but the estimate is k̂. In other words, we would like an optimal minimax
estimator according to the loss function W (k, k̂). An optimal estimator k̂ would minimize

max
k>0

∫ ∞
0

· · ·
∫ ∞

0

W (k, k̂(x1, . . . , xn))(
n∏
i=1

f (k)(xi))dx1 · · · dxn ,

where f (k)(x) is the probability density function of M (k).
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To tie us back to the framework of Section 2, note that for each y ∈ Y , the minimum key
R(le(y)) has distribution M (w(S(y))). Hence, our estimation problem is: given values from the
distribution M (w(S(y))), estimate w(S(y)).

One loss function that we consider is

W (k, k̂) =

{
0 when k(1− ε) ≤ k̂ ≤ k(1 + ε)
1 otherwise

(1)

This loss function means that we are equally happy with all estimates such that |k̂ − k| ≤ kε and
unhappy, and equally so, with all other estimates. It measures the confidence level in our estimate
having a relative error of at most ε. (Corresponds to the bound in Theorem 2.1.)

We also consider the loss function

W (k, k̂(x1, . . . , xn)) = |k̂(x1, . . . , xn)− k|/k (2)

that measures the average relative error (corresponds to the bound in Theorem 2.2), and the loss
function

W (k, k̂) =

(
k̂ − k
k

)2

(3)

that measures the variance of the estimator. For some applications we would like the estimator to
be unbiased (have expectation equal to the value estimated). The estimator is unbiased if

∀k > 0,

∫ ∞
0

· · ·
∫ ∞

0

(k − k̂(x1, . . . , xn))(
n∏
i=1

f (k)(xi))dx1 · · · dxn = 0 .

7 Selection-based estimators
We provide an asymptotic analysis of the performance of selection-based estimators and establish
that Theorems 2.1 and 2.2 hold. The estimation algorithm performs n iterations and we select the
bn(1− 1/e)c-smallest value as an estimator of the expected value. We provide the analysis for the
exponential distribution. A very similar argument establishes that the same asymptotic bounds hold
when sampling from the uniform distribution, provided that the weight of the estimated quantities
is larger than some constant (e.g., k ≥ 1).) For an integer n ≥ 1 and k > 0, denote by E(n,k)

the bn(1− 1/e)c-smallest value amongst n independent random variables distributed according to
M (k).

Proposition 7.1.

Prob{E(n,k) ≥ (1 + ε)µ} =

{
if ε < 1, exp(−Ω(ε2n))
if ε > 1, exp(−Ω(neε))
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Proof. Let p = Prob{M (k) ≥ (1 + ε)µ}. Note that p = exp(−(1 + ε)). Let the r.v. Xn be the
number of successful trials among n Bernoulli trials with probability of success p. We have

Prob{E(n,k) ≥ (1 + ε)µ} = Prob{Xn ≥ dn/ee} =
n∑

i=dn/ee

b(i;n, p) .

Applying Chernoff’s bound [4] we obtain

Prob{Xn ≥ n/e} ≤ Prob{|Xn − np| ≥ np(1− 1/(pe))}
≤ exp(−(1− 1/(pe))2np/2)

= exp(−(1− eε)2ne−1−ε/2) .

The proof follows.

Proposition 7.2.

Prob{E(n,k) ≤ (1− ε)µ} =


if ε ≤ 1/2, exp(−Ω(ε2n))
if 1 > ε ≥ 1/2, exp(−Ω(n/(1− ε)))
if ε = 1, 0

Proof. Let p = Prob{M (k) ≤ (1− ε)µ}. We have p = 1− exp(−(1− ε)). Let the r.v. Xn be the
number of successful trials among n Bernoulli trials with probability of success p. Note that

Prob{E(n,k) ≤ (1− ε)µ} = Prob{Xn ≥ bn(1− 1/e)c} =
n∑

i=bn(1−1/e)c

b(i;n, p) .

Applying Chernoff’s bound we obtain

Prob{Xn ≥ n(1− 1/e)− 1} ≤ Prob

{
|Xn − np| ≥ np

(
1− e− 1

pe
− 1

np

)}
≤ exp

(
−
(

1− e− 1

pe
− 1

np

)2

np/2

)

= exp

(
−(1− eε − e/n)2n

2e(e− eε)

)
.

The proof follows.

Consider the estimator k̂ = 1/E(n,k). We bound the relative error of k̂:

Corollary 7.3.
For ε < 1, Prob{ |k−k̂|

k
≥ ε} = exp(−Ω(ε2n))

For ε ≥ 1, Prob{ |k̂−k|
k
≥ ε} = exp(−Ω(εn))

The bound on the expected relative error of the estimator follows from Corollary 7.3 using
elementary calculus:

Proposition 7.4. E(|k − k̂|/k) = O(1/
√
n)
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8 Averaging-based estimators
Let x1, . . . , xn be independent samples from the distribution M (k) (for some unknown k > 0). For
an integer n ≥ 1 and k ≥ 1, denote by S(n,k) the r.v.

∑n
i=1 xi (the sum of n independent random

variables distributed according to M (k)). We estimate k by applying an estimator to s =
∑n

i=1 xi.
When the Exponential distribution is used to set the keys we consider the estimators

k̂(s) =
n

s
,
(n− 1)

s

We bound the maximum, over k > 0, of the expected loss and the variance incurred by the
estimator k̂ when the true value is k. (The expected loss and variance turns out to be independent of
k.) We consider the loss functions stated in Subsection 6.3 and provide exact analytic expressions
for the bias, variance, relative error, and the interdependence of the confidence, accuracy, and the
number of rounds. We establish that Theorems 2.1 and 2.2 hold when the Exponential distribution
is used to set the keys. Similar arguments apply when the keys are sampled according to the
uniform distribution, when k ≥ 1 with the estimator k̂(s) = max{1, n/s− 1}.

We now consider the probability density and distribution functions of S(n,k) and deduce the
bias, the relative error, and the variance of the estimators. S(n,k) has density and distribution
functions

gn,k(s) = k
(ks)n−1

(n− 1)!
e−ks

Gn,k(s) = 1− e−ks
(

1 +
n−1∑
i=1

(ks)i

i!

)
.

where s ≥ 0 (see, e.g. [11]).
Consider the estimator k̂ = (n − 1)/s and the random variable y = k̂/k. The density and

distribution functions of y are independent of k and are given by

fn(y) = − (n− 1)n

(n− 1)!yn+1
e−

(n−1)
y

Fn(y) = e−
(n−1)
y

(
1 +

n−1∑
i=1

(n− 1)i

i!yi

)
for y ≥ 0. The following expressions follow for the relative error

Prob{k̂ ≥ k(1 + ε)} = Prob{y ≥ 1 + ε}

= 1− e−
n−1
1+ε

(
1 +

n−1∑
i=1

(n− 1)i

(1 + ε)ii!

)
Prob{k̂ ≤ k(1− ε)} = Prob{y ≤ 1− ε)}

= e−
n−1
1−ε

(
1 +

n−1∑
i=1

(n− 1)i

(1− ε)ii!

)

17



Hence,

Prob

{
|k̂ − k|
k

≥ ε

}
= 1− e−

n−1
1+ε

(
1 +

n−1∑
i=1

(n− 1)i

(1 + ε)ii!

)
+ e−

n
1−ε

(
1 +

n−1∑
i=1

ni

(1− ε)ii!

)
.

By integrating we obtain the following. The bias of the estimator is

E

(
k̂ − k
k

)
= E(y)− 1 =

∫ ∞
0

yfn(y)dy − 1 = 0 .

(the estimator is unbiased). The expected relative error is

E

(
|k̂ − k|
k

)
= E(|1− y|) =

∫ ∞
0

|1− y|fn(y)dy =
2(n− 1)(n−2)

(n− 2)!en−1
≈

√
2

π(n− 2)
.

(using Stirling’s formula.) The variance of the estimator is

E

(
(k̂ − k)2

k

)
= E((1− y)2) =

∫ ∞
0

(1− y)2fn(y)dy =
1

n− 2
.

Consider the estimator k̂′ = n/s and the random variable y = k̂′/k. Similarly, the density and
distribution functions of y are

fn(y) = − nn

(n− 1)!yn+1
e−

n
y

Fn(y) = e−
n
y

(
1 +

n−1∑
i=1

ni

yii!

)
for y ≥ 0. It follows that

Prob

{
|k̂ − k|
k

≥ ε

}
= 1− e−

n
1+ε

(
1 +

n−1∑
i=1

ni

(1 + ε)ii!

)
+ e−

n
1−ε

(
1 +

n−1∑
i=1

ni

(1− ε)ii!

)
,

the bias is 1
n

, and the variance is n+2
(n−2)(n−1)

.

We sketch the proof of Theorem 2.1 for the estimators k̂, k̂′. Note that Prob{k̂ ≥ k(1 + ε)}
equals the probability that a Poisson distribution with expectation Λ = n

1+ε
has n or more successes.

Prob{k̂ ≤ k(1− ε)} equals the probability that a Poisson distribution with Λ = n
1−ε has n or fewer

successes. The asymptotic bounds can be derived by approximating the Poisson distribution as a
limit of Binomial distributions, and applying the Chernoff bounds in a similar manner to Section 7.

Remark 8.1. Billingsley ([3], pp. 368) considers as an example in his book our exact problem of
estimating the unknown parameter k of an exponential distribution, given n independent samples
from that distribution. As a consequence of the Central Limit theorem and of Skorohod’s theorem
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he obtains that the distribution of the r.v.
√
n
k

(n/S(n,k) − k) converges to the Normal distribution
with zero mean and unit variance. That is, for every η,

lim
n→∞

Prob{
√
n

k
(n/S(n,k) − k) ≤ η} = Φ(η) ,

where Φ(t) = 1√
2π

∫ t
−∞ exp(−x2/2)dx is the distribution function of the normal distribution.

Prob{|k̂ − k|
k

≥ ε} = Prob{
√
n
|k̂ − k|
k

≥
√
nε}

⇒ 2Φ(−ε
√
n) ≤ 2 exp(nε2/2)

ε
√

2πn

= e−Ω(ε2n)

The last inequality follows from bounds on the tail of the Normal distribution (see, e.g., Feller [10]
pp. 175). The expected relative error converges to

E(
|n/S(n,k) − k|

k
) =

1√
n
E(
√
n
|k̂ − k|
k

)

⇒ 2√
2πn

∫ ∞
0

x exp(−x2/2)dx =

√
2

πn

The convergence in probability to the Normal distribution demonstrates that the asymptotic bounds
we obtained for our estimators are essentially optimal.

9 Implementation issues
The estimate quality of the estimation framework of Section 2 increases with the number of itera-
tions (LE calls). We considered sampling based on either the uniform or exponential distributions
and several estimators based on selection or averaging. These schemes and other variants exhibit
the same asymptotic bounds. However, for practical applications it is desirable to determine the
precise tradeoffs between number of iterations and accuracy, for each scheme. We studied these
tradeoffs using both simulations and analysis. We concluded that our averaging-based estimators
perform significantly better than the selection-based ones (require much fewer iterations for similar
estimate quality). As for averaging-based estimators, sampling from the exponential distribution
yields better performance than the uniform distribution. The choice of an appropriate estimator
should depend on the application. Different objectives such as unbiasedness or a particular loss
function call for different estimators. For example: the estimator (n − 1)/s is unbiased and has
smaller variance and expected relative error (the loss functions (2) and (3)) than n/s. However, for
small values of n and the loss function (1), it incurs a larger loss. For unit weights, the uniform
distribution may be simpler to work with and justify a larger number of iterations.
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Figure 4: Performance of the estimator (n− 1)/s with expo. dist. keys

Plots of the performance of the (n − 1)/s estimator with exponentially distributed keys are
provided in Figure 4. The figure plots the confidence level as a function of the number of iterations
(rounds) n and the accuracy ε. The curves were plotted using the derivations in Section 8.

We comment on sampling the keys. In our experiments, the pseudo random generators supplied
in standard C (UNIX) environment achieved the expected performance of the estimators. Small
precision suffices to represent the keys since we need only a fixed number of significant bits. Also,
it is well known that samples from the exponential distribution require an expected small number
of random bits. Karger’s thesis [16] contains a discussion and bibliography on sampling efficiently
from the exponential distribution.

10 Further applications
We discuss additional applications and extensions of this work.

Consider our estimation algorithm. In each iteration, for each node v ∈ V , the algorithm
computes a node in S(v), selected uniformly at random (see Proposition 2.2). After k iterations
we have for each v ∈ V , a list of k nodes in S(v).

Computing the transitive closure After k linear time iterations, we obtain for each node v,
k independent random samples from the set S(v). It follows that for each v ∈ V , after k =
O(|S(v)| log |S(v)|) iterations, with probability 1−O(1/ poly n), we computed all of S(v). Hence,
we obtain a new algorithm to compute the transitive closure, partially or in whole. If P =
maxv∈V |S(v)|, the transitive closure is computed with probability 1 − O(1/ poly n) after k =
P logP iterations (that is, in O(Pm log n) time). In the worst case, P = O(n) and like previous
methods, our algorithm has a Õ(mn) bound. In some cases, however, it is faster than other tran-
sitive closure algorithms. This is of interest since conceivably small random sample of elements
from each reachability set may be useful for some applications. and furthermore, an abundance of
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papers in the database literature are concerned with faster transitive closure algorithms for some
families of graphs (e.g., Jakobsson gave faster algorithms for graphs with certain connectivity
properties [13, 14], also see Dar [9] for an experimental comparison of the performance of differ-
ent transitive-closure algorithms).

Estimating similarities between reachability sets The lists of different nodes are correlated
and can be used to estimate “similarities” between the reachability sets of these nodes. That is, we
can determine with high confidence whether two nodes {v, u} are such that

|S(v) ∩ S(u)| ≥ α|S(v) ∪ S(u)| ,

for some fixed constant α > 0. In each iteration, the probability that le(v) = le(u) is

|S(v) ∩ S(u)|/|S(v) ∪ S(u)| .

This probability can be estimated by counting the number of equal components in v’s and u’s lists
and dividing it by k.

Estimating sizes of unions of neighborhoods The lists can be used to estimate for any given
subset of nodes U ⊂ V , the number of nodes reachable from U , |

⋃
u∈U S(u)|. For each node u,

we consider the k-vector of least-keys. The estimate on |
⋃
u∈U S(u)| is produced in O(|U |k) time

by applying the estimator to the k-vector obtained by a coordinate-wise minima of the k-vectors
of the nodes in U . It is easy to see that the confidence and accuracy levels of the estimate are the
same as for single nodes. Similarly, for directed graphs with edge lengths we can estimate sizes of
unions of neighborhoods.

On-line estimation of weights of growing sets Our estimation framework is admissible in on-
line settings where the goal is to produce estimates on-line of the weights of dynamically growing
sets. Consider the following scenario. Let X be a set of elements with positive weights w : X →
R+. Let Y be a collection of subsets of X . The admissible operations on the subsets are:

i. Create a new subset (initialized to ∅ or a copy of another subset).

ii. Add a new weighted element x to one or more subsets.

iii. Merge two subsets {y, y′} ⊂ Y (replace y by y ∪ y′).

iv. Weight-query: For a subset y ∈ Y , produce an estimate of w(y).

A straightforward way to support these operations is by explicitly maintaining the contents of each
subset. The estimation framework allows us to support this data structure and operations efficiently
while providing high confidence and accuracy estimates for the weights. We outline the method.
We maintain a small size vector for each subset. The entries of a vector that corresponds to the
empty subset are initialized to +∞. A merge of two subsets amounts to performing coordinate-
wise minima of the two vectors. Adding a new element x to some subsets amounts to drawing a
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random keys vector for x and replacing the vector of each subset x is added to by the coordinate-
wise minima of the vector of x and the vector of the subset. A weight estimate for a subset y is
obtained by applying an estimator to the entries of the vector of y. This application was conceived
with Yi-Min Wang and Gaurav Suri, in the context of counting preceding events in a distributed
system of communicating processes [6].

Considering ith least-ranked elements In some situations it is worthwhile to apply an estimator
to the keys of the nth least-ranked elements of a set in a single iteration instead of considering
the least-ranked element in n different iterations. A more general statement is to perform n/i
iterations where in each iteration we consider the key of the ith-least-ranked element. Typically
we would like to choose i to be as large as possible under the condition that it is quite unlikely
that for the estimated sets we obtain repetitions of the least-ranked element when using i different
iterations. For the reachability and neighborhood sizes estimation algorithms, the computation
involved in obtaining the ith-least elements is comparable to performing i iterations, and therefore,
the only benefit of using ith least-ranked element is to save random bits. In some other applications,
however, the use of ith least-ranked elements reduces the amount of computation as well. For
example, in on-line applications (as sketched above) when the number of sets is much smaller than
the number of elements. For each new element, we draw a single random number instead of a
vector of random numbers. For each subset, we maintain a list of the n smallest keys of elements
in the subset. Merging two subsets amounts to taking the n smallest keys in the union of the two
lists.
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